Bibliography

Alliez, 2006
Alliez, P. (2006).
Pierre alliez's homepage.
http://www-sop.inria.fr/geometrica/team/Pierre.Alliez/.
Retrieved December 10, 2006.

Balmelli et al., 2002
Balmelli, L., Taubin, G., and Bernardini, F. (2002).
Space-optimized texture maps.
Computer Graphics Forum, 21(3):411-411.

Baraff and Witkin, 1998
Baraff, D. and Witkin, A. (1998).
Large steps in cloth simulation.
In Cohen, M., editor, Proceedings of SIGGRAPH 98, Annual Conference Series, Addison Wesley, pages 43-54.

Biot, 1965
Biot, M. A. (1965).
Mechanics of Incremental Deformations.
John Wiley and Sons, Inc.

Braess, 2001
Braess, D. (2001).
Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics.
Cambridge University Press, Cambridge.
Second Edition.

Breen et al., 1994
Breen, D. E., House, D. H., and Wozny, M. J. (1994).
Predicting the drape of woven cloth using interacting particles.
In Glassner, A., editor, Proceedings of SIGGRAPH '94 (Orlando, Florida, July 24-29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 365-372. ACM SIGGRAPH, ACM Press.

Bridson et al., 2002
Bridson, R., Fedkiw, R., and Anderson, J. (2002).
Robust treatment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics, 21(3):594-603.

Choi and Ko, 2002
Choi, K.-J. and Ko, H.-S. (2002).
Stable but responsive cloth.
ACM Transactions on Graphics, 21(3):604-611.

Cohen-Steiner and Morvan, 2003
Cohen-Steiner, D. and Morvan, J.-M. (2003).
Restricted delaunay triangulations and normal cycle.
In Proceedings of the nineteenth Conference on Computational Geometry (SCG-03), pages 312-321, New York. ACM Press.

do Cormo, 1976
do Cormo, M. P. (1976).
Differential Geometry of Curves and Surfaces.
Prentice-Hall, Inc.

Feynman et al., 1989
Feynman, R., Leighton, R. B., and Sands, M. L. (1989).
The Feynman Lectures on Physics.
Addison-Wesley Publishing Company.

Gould, 1994
Gould, P. L. (1994).
Introduction to Linear Elasticity, 2nd ed.
Springer-Verlag New York, Inc.

Grinspun et al., 2003
Grinspun, E., Hirani, A., Desbrun, M., and Schröder, P. (2003).
Discrete shells.
In Breen, D. and Lin, M., editors, Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA-03), pages 62-67, Aire-la-Ville. Eurographics Association.

Molino et al., 2004
Molino, N., Bao, Z., and Fedkiw, R. (2004).
A virtual node algorithm for changing mesh topology during simulation.
ACM Transactions on Graphics, 23(3):385-392.

Polthier, 2002
Polthier, K. (2002).
Polyhedral surfaces of constant mean curvature.
Habilitationsschrift, Technische Universitt Berlin.

Qin and Terzopoulos, 1996
Qin, H. and Terzopoulos, D. (1996).
D-NURBS: A physics-Based framework for geometric design.
IEEE Transactions on Visualization and Computer Graphics, 2(1):85-96.
ISSN 1077-2626.

Sander et al., 2002
Sander, P. V., Gortler, S. J., Snyder, J., and Hoppe, H. (2002).
Signal-specialized parametrization.
In Gibson, S. and Debevec, P. E., editors, Rendering Techniques, pages 87-98. Eurographics Association.

Terzopoulos and Fleischer, 1988
Terzopoulos, D. and Fleischer, K. (1988).
Modeling inelastic deformation: Viscoelasticity, plasticity, fracture.
In Dill, J., editor, Computer Graphics (SIGGRAPH '88 Proceedings), volume 22, pages 269-278.

Villard and Borouchaki, 2002
Villard, J. and Borouchaki, H. (2002).
Adaptive meshing for cloth animation.
In Proceedings of the 11th International Meshing Roundtable (IMR 2002), September 15-18, 2002, Ithaca, New York, USA, pages 243-252.

Volino et al., 1995
Volino, P., Courchesne, M., and Thalmann, N. M. (1995).
Versatile and efficient techniques for simulating cloth and other deformable objects.
Computer Graphics, 29(Annual Conference Series):137-144.

Volkov and Li, 2003
Volkov, V. and Li, L. (2003).
Real-time refinement and simplification of adaptive triangular meshes.
In van Wijk, G. T. J. J. and Moorhead, R. J., editors, Proceedings of IEEE Visualization 2003, pages 155-162. IEEE Computer Society, IEEE Computer Society Press.

Zienkiewicz and Taylor, 1989
Zienkiewicz, O. C. and Taylor, R. (1989).
The finite element method.
McGraw-Hill.



Copyright © 2005 Adrian Secord. All rights reserved.