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Abstract

We present a set of very low bandwidth techniques for navigating remote environments. In a typical
setup using our system, a virtual environment resides on a server machine, and one or more users explore
the environment from client machines. Each client uses previous views of the environment to predict the
next view, using the known camera motion and image-based rendering techniques. The server performs
the same prediction, and sends only the difference between the predicted and actual view. Compressed
difference images require significantly less bandwidth than the compressed images of each frame, and
thus can yield much higher frame rates. To request a view, the client simply sends the coordinates of the
desired view and of the previous view to the server. This avoids the overhead of maintaining connections
between the server and each client.

No restrictions are placed on the scene or the camera motions; the view compression technique may
be used with arbitrarily complex 3D scenes or dynamically changing views from a web camera or a
digital television broadcast. A lossy compression scheme is presented in which the client estimates the
cumulative error in each frame, and requests a comprete refresh before errors become noticable.

This work is applicable to remote exploration of virtual worlds such as on head-mounted displays,
Digital Television, or over the Internet.

1 Introduction

Within the next decade, users can look forward to a variety of compelling multimedia expereinces, made

possible by the steady increase of computing power. One oft-stated goal is the development of shared
virtual worlds and entertainment broadcasts that allow consumers to remotely explore 3D spaces. However,
the speed of the Internet and other broadcast media cannot keep up with the demand for available bandwidth,
if thousands of users are to have high-fidelity access to remote worlds. To address this issue, we introduce a
class of compression schemes designed to significantly reduce the bandwidth required for remote navigation.



In a typical setup using our scheme, a user explores a virtual world on a client machine. This machine
requests views of the world from a server machine. Sending the entire model over the network in advance is
extremely slow, or impossible for dynamic scenes; one solution is to send each camera view from the server
to the client for each frame as a compressed image. This solution will still require high network bandwidth
to display video at interactive frame rates.

This paper presents a novel compression scheme that predicts the appearance of new views from previous
views, using the known camera motion and image-based rendering techniques. This allows the server to send
only incremental amounts of information for each frame, greatly reducing the bandwidth required for remote
navigation. Unlike most image compression schemes, this method is cooperative: the client and server can
communicate to determine the transmission for each frame that maximizes quality of service.

It is assumed that available network resources in the coming decade will lag far behind increasing pro-
cessor power, and will be the limiting factor on navigation frame rates. Thus, some additional computation
required for each frame is acceptable.

2 Related Work

This paper is based on image-based rendering, in which images are used as primitives rather than 3D models.
(See Kang [12] for a survey.) Many authors have described image-based techniques for utilizing temporal
coherence to reduce rendering latency [5, 22, 19, 7, 20].

Regan and Pose [18] and Mark et al. [16] use an image-based approach to overcome high network
latencies. In these systems, reference images are generated and sent to the client system. The client then
reprojects these images to generate new views at interactive rates until the next set of reference images
arrive. Conner and Holden [6] discuss techniques for hiding the effects of latency in a shared world. These
address latency rather than bandwidth, are are orthogonal to the approach presented in this paper.

Two commercial products, Apple QuickTime VR 3.0 [2] and LivePicture ImageServer [15] send panora-
mas over the network in pieces, so that the client may view the scene without having to receive the entire
panorama. However, a large portion of the panorama must be downloaded before much of the panorama may
be viewed. Also, these systems are not easily extensible to handle dynamic imagery or camera translations.

The approach presented in this paper is an image-compression scheme, based on specialized a priori
knowledge about the images. It is similar to the multiscale compression schemes [3, 21] which use predic-
tion and difference. This work is designed for a cooperative client-server approach, similar to Levoy [14].
The MPEG compression scheme [13] uses estimated motion vectors to predict video frames to compress
prerecorded video. Similarly, Guenter et al. [8, 24] compress video using the known motion vectors from
synthetic scenes. Chang et al. [4] use foveation, a spatially-varying compression scheme for remote view-
ing of very large 2D images. They use a generalization of wavelets, that allows an image to be displayed
at different resolutions at different locations. In this system, the server sends only the image coefficients
necessary to update the view of a static, 2D space.
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Figure 1. View compression for remote navigation. Rather than send every view of the virtual world over
the network separately, the client can predict a desired view from previous views. The server needs only to
send small corrections, instead of entire views.

3 Remote Navigation System

3.1 View Compression

Our remote navigation scheme enables a user, on a client machine, to interactively explore a 3D environment
stored on a remote machine (the server). The client and server are connected by a network. Operation begins
when the server sends the image of the view from a user’s starting location in the 3D world.

The operation of the system is illustrated in Figure 1. For each frame, the client system requests the view
for the new camera position, orientation, and focal length, by sending the coordinates of the néfvaelv
the coordinates of the old vieW,. While waiting for a response, the client predicts the appearance of the
new view, by reprojecting the old view to the new view (Figure 2). The reprojection operation is described
in Section 3.4. In the presence of network latency, predicted views can also be used to show intermediate
frames [16].

The server renders both viewg and V7, reprojectsV, to the camera view of;, and computes the
difference between the actual and predicted view. The difference image is then sent back to the client. The
client then reconstructs the actual view by summing the prediction and the difference image.

A depth map is required for 3D reprojection. The same prediction/difference scheme is used for depth
maps: the client predicts the depth map for a new view by transferring the current depth map, and a difference
image is sent by the server. Since depth maps are usually smooth (except at object contours), their bandwidth
requirements can be reduced by subsampling. We envision that our system will be used in conjunction with
the latency compensation technique of Mark et al. [16], in which case the depth map is also required for
generating intermediate frames.



The key observation of this paper is that previous views may be used to accurately predict new views.
Ideally, the prediction will exactly match the new view in regions visible from the current view. In practice,
small errors are introduced by sampling and changes to the underlying scene. Thus, the difference image
will be highly compressible, requiring much less bandwidth than sending each new view in its entirety.

3.2 Stateless Navigation

Each new request contains all the necessary information for the server to create difference images. Thus,
the system istatelessit is not necessary to maintain dedicated connections between server and clients, nor
does the server need to keep track of each client’s history. The only requirement is that the server reconstruct
previous views, either by caching or rerendering. For example, the server in a dynamically changing scene
needs only to cache a reasonable number of previously rendered views.

The stateless framework allows the system to scale to an arbitrary number of clients, limited only by
available network resources. There is no bookkeeping overhead as would be required for managing a large
database of open connections.

3.3 Quality of Service

So far, we have described a system that uses lossless compression, i.e. each difference image is an exact
difference, producing a perfect reconstruction on the client side. In cases of extremely limited bandwidth,

it may be necessary to use a lossy compression scheme. In our experience, moderately lossy compression
does not produce any noticable degradation in image quality over a few frames of transmission. However,
errors tend to build up in the images when there is substantial overlap in a long sequence of consecutive
views, such as when the user focuses on one small region of the schene.

If stateless navigation is not required, then the server can compensate for compression errors at each
frame. The server keeps track of the view seen by the user, by performing the same reconstruction steps as
the client. The difference images are then computed by reprojecting the user views. Thus any error present
in the previous frame will be corrected by the difference image from the current frame. In this scheme,
highly compressed difference images can be sent with no error build between frames.

In a stateless system, the responsibility falls to the client for keeping track of image error. Along with
each difference image, the server could send the cumulative erroi{eegror) for each difference image.

The client uses this information to keep a running estimate of the cumulative error for the image or for each
region. When the image error exceeds some threshold, the client would request a complete new view, rather
than a difference image. These periodic refreshes are analogous to the | frames used in MPEG [13]. The
extra data sent is minimal (on order of a few bytes.)

3.4 Reprojection

The central operation of image-based rendering is “reprojection,” where a sampled view of a 3D world is
used to generate another view. If the views differ only in camera direction, then the operation is equivalent to
enviroment mapping [9]. If the camera position moves, then additional depth or correspondence information
is required [11, 1], and there may be ambiguities in the result. We use difference images to correct these
ambiguities.



Reprojection can be performed with standard texture mapping hardware. Camera rotation without trans-
lation is performed by texture mapping the previous view onto a rectangle coinciding with the old view
plane, and then rotating the camera. Camera translation requires additional depth information. The current
view is mapped onto a textured depth mesh [7, 20], a mesh that represents the current view as a height field
with the correct depth. The texture coordinates are chosen to prevent perspective correction [7, 10]. To
reproject, the camera is rotated and translated, and the mesh is rendered. The depth mesh may be approxi-
mate, or subsampled; any errors in the prediction will be corrected by the difference image. Pixel-remapping
[11, 1] algorithms can also be used, with similar results.

4 Experiments

We have implemented a prototype system using OpenGL [23]. The server and client run as applications on
separate computers, and are connected by a TCP/IP socket. Image reprojection is performed as described in
the previous section. Images are run-length encoded and then Huffman coded.

In order to test the algorithm, we compare the sizes of compressed full views, to compressed difference
images. The 3D scene used for the test is shown in the color plates. Each view is a 256x256 RGB image
(192 kB raw). Each test consisted of a single camera motion. The full view and the difference view were
each run-length encoded, and then Huffman coded. The compression ratio is computed as the ratio of the
size of the compressed difference view divided by the compressed actual view. The results are shown in
Figure 2. For small camera rotations, (i.e. less than 5 degress), the compression ratio is about 55%. This
means that the difference scheme would require half the bandwidth of the simple scheme to achieve the same
frame rate. As the new view moves further from the old view, less of the new view can be predicted from
the old view. Figure 3 shows the same comparison, for viewpoint translation horizontal to the viewplane.
Again, compression ratios of about 55% are achieved for small camera movements. When using a more
sophisticated still image encoding scheme (JPEG), we get roughly the same compression ratios as with RLE
and Huffman coding.

We believe that significant speedup can be attained by using UDP, a stateless protocol, instead of TCP/IP,
a connection-based protocol. Our current system could also be improved by interleaving client and server
computations, and by using mipmapped textures instead of point sampling.

5 Discussion and Future Work

A stateless, low-bandwidth method for remote environment navigation has been demonstrated. A client
system is used to explore an environment contained on a server system. During navigation, the client can
predict new views by reprojecting old views, using the known camera motion and image-based rendering
techniques. The server system needs only to send the difference between the prediction and the actual view.
Since the difference image is highly compressible, the system requires relatively little bandwidth. It is
assumed that both systems are fast enough to perform rendering and differencing in real-time, and that the
primary bottleneck is in the intervening network. It is also assumed that the server can perfectly replicate
the client’s reprojection operation.

We considered an alternative approach to view compression, in which the server sends pieces of an
underlying image-based model. In the case of panorama navigation, the client requests pieces of the envi-
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Figure 2: Comparison of frame sizes for compressed views vs. compressed difference images. The left plot
shows pure rotations, and the right plot shows pure translations. For a translation of 4, about 25% of the
new view is visible in the old view.

ronment map, rather than views, and stores them in a cache. This method has the advantage that the client
can predict views based on all previous views, not just the last view. However, extending this method to full
3D navigation or to dynamically-changing scenes may require considerable bookkeeping effort.
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Figure 3: (a) Old scene, before a camera motion. (b) New scene, after motion

(b)

Figure 4: (a) New scene predicted from the old scene (b) Image showing where difference values exceed a
threshold.



Figure 5: Textured depth mesh from the previous example, seen a side view.



(b)

Figure 6: (a) View of a cylindrical environment map. (b) Difference image after a small horizontal rotation.
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